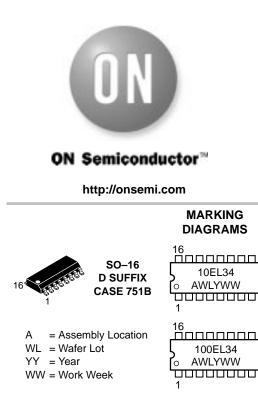
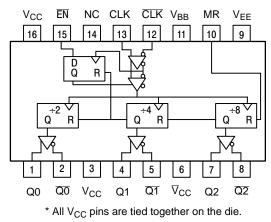
5V ECL ÷2, ÷4, ÷8 Clock Generation Chip


The MC10/100EL34 is a low skew $\div 2, \div 4, \div 8$ clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 µF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The common enable (\overline{EN}) is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. An internal runt pulse could lead to losing synchronization between the internal divider stages. The internal enable flip-flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input.

Upon startup, the internal flip-flops will attain a random state; the master reset (MR) input allows for the synchronization of the internal dividers, as well as multiple EL34s in a system.

The 100 Series contains temperature compensation.


- 50 ps Output-to-Output Skew
- Synchronous Enable/Disable
- Master Reset for Synchronization
- ESD Protection: > 1 KV HBM, > 100 V MM
- PECL Mode Operating Range: $V_{CC} = 4.2$ V to 5.7 V with $V_{EE} = 0$ V
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -4.2 V$ to -5.7 V
- Internal Input Pulldown Resistors on CLK(s), EN, and MR
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL–94 code V–0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 191 devices

ORDERING INFORMATION

Device	Package	Shipping
MC10EL34D	SO-16	48 Units / Rail
MC10EL34DR2	SO-16	2500 Units / Reel
MC100EL34D	SO-16	48 Units / Rail
MC100EL34DR2	SO–16	2500 Units / Reel

LOGIC DIAGRAM AND PINOUT ASSIGNMENT

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

FUNCTION TABLE

CLK*	EN* MR*		FUNCTION
Z ZZ	L	L	Divide Hold Q _{0–3}
х	х	Н	Reset Q ₀₋₃

Z = Low-to-High Transition

ZZ = High-to-Low Transition

* Pins will default low when left open.

PIN	FUNCTION
CLK, CLK EN	ECL Diff Clock Inputs ECL Sync Enable
MR	ECL Master Reset
Q0, <u>Q0</u> Q1, <u>Q1</u>	ECL Diff ÷2 Outputs ECL Diff ÷4 Outputs
$Q2, \overline{Q2}$	ECL Diff ÷8 Outputs
V _{BB} V _{CC}	Reference Voltage Output Positive Supply
V _{EE}	Negative Supply
NC	No Connect

PIN DESCRIPTION

MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 —6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
ТА	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	16 SOIC 16 SOIC	130 75	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	std bd	16 SOIC	33 to 36	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

1. Maximum Ratings are those values beyond which device damage may occur.

	–40°C 25°C				25°C	85°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current			39			39			39	mA
V _{OH}	Output HIGH Voltage (Note 3)	3920	4010	4110	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 3)	3050	3200	3350	3050	3210	3370	3050	3227	3405	mV
V _{IH}	Input HIGH Voltage (Single–Ended)	3770		4110	3870		4190	3940		4280	mV
V _{IL}	Input LOW Voltage (Single–Ended)	3050		3500	3050		3520	3050		3555	mV
V_{BB}	Output Voltage Reference	3.57		3.7	3.65		3.75	3.69		3.81	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 4)	3.0		4.6	3.0		4.6	3.0		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.3			μA

10EL SERIES PECL DC CHARACTERISTICS V_{CC} = 5.0 V; V_{EE} = 0.0 V (Note 2)

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

2. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.06 V / -0.5 V.

3. Outputs are terminated through a 50 ohm resistor to V_{CC} -2 volts.

4. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1V.

			–40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current			39			39			39	mA
V _{OH}	Output HIGH Voltage (Note 6)	-1080	-990	-890	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 6)	-1950	-1800	-1650	-1950	-1790	-1630	-1950	-1773	-1595	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1230		-890	-1130		-810	-1060		-720	mV
VIL	Input LOW Voltage (Single-Ended)	-1950		-1500	-1950		-1480	-1950		-1445	mV
V_{BB}	Output Voltage Reference	-1.43		-1.30	-1.35		-1.25	-1.31		-1.19	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 7)	-2.0		-0.4	-2.0		-0.4	-2.0		-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current	0.5			0.5			0.3			μΑ

10EL SERIES NECL DC CHARACTERISTICS V_{CC} = 0.0 V; V_{EE} = -5.0 V (Note 5)

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

5. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.06 V / –0.5 V. 6. Outputs are terminated through a 50 ohm resistor to V_{CC}–2 volts.

V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1V.

			–40°C			25°C		85°C			
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Мах	Unit
I _{EE}	Power Supply Current			39			39			42	mA
V _{OH}	Output HIGH Voltage (Note 9)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 9)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV
V _{IH}	Input HIGH Voltage (Single–Ended)	3835		4120	3835		4120	3835		4120	mV
V _{IL}	Input LOW Voltage (Single–Ended)	3190		3525	3190		3525	3190		3525	mV
V_{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 10)	2.2		4.6	2.2		4.6	2.2		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current	0.5			0.5			0.5			μA

100EL SERIES PECL DC CHARACTERISTICS V_{CC} = 5.0 V; V_{EE} = 0.0 V (Note 8)

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

8. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V.

9. Outputs are terminated through a 50 ohm resistor to V_{CC} -2 volts.

10. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1V.

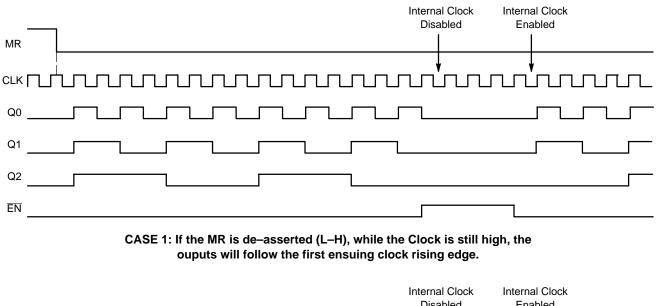
			–40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current			39			39			42	mA
V _{OH}	Output HIGH Voltage (Note 12)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 12)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V _{IH}	Input HIGH Voltage (Single–Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single–Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 13)	-2.8		-0.4	-2.8		-0.4	-2.8		-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μA

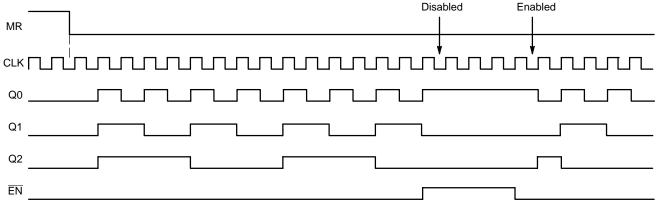
100EL SERIES NECL DC CHARACTERISTICS $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 11)

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

11. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / –0.5 V. 12. Outputs are terminated through a 50 ohm resistor to V_{CC}–2 volts.

13. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1V.

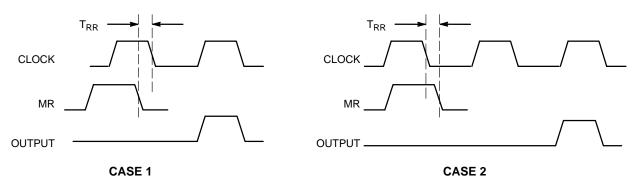

AC CHARACTERISTICS $V_{CC} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 14)


			–40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency				1.1			1.1			GHz
t _{PLH} t _{PHL}	PropagationCLK to Q0Delay toCLK to Q1,2OutputMR to Q	960 900 750		1200 1140 1060	960 900 750		1200 1140 1060	970 910 790		1210 1150 1090	ps
t _{SKEW}	Within-Device Skew (Note 15)		100			100			100		ps
t _{JITTER}	Cycle-to-Cycle Jitter		1.0			1.0			1.0		ps
t _S	Setup Time EN	400			400			400			ps
t _H	Hold Time EN	250			250			250			ps
t _{RR}	Set/Reset Recovery	400	200		400	200		400	200		ps
V _{PP}	Input Swing (Note 16)	150		1000	150		1000	150		1000	mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	275		525	275		525	275		525	ps

14. 10 Series: V_{EE} can vary +0.06 V / -0.5 V. 100 Series: V_{EE} can vary +0.8 V / -0.5 V.
15. Within-device skew is defined as identical transitions on similar paths through a device.

16. V_{PP}(min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ~40.

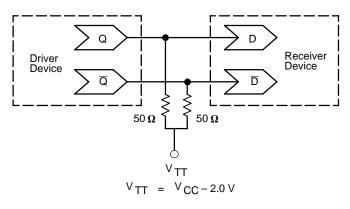
There are two distinct functional relationships between the Master Reset and Clock:

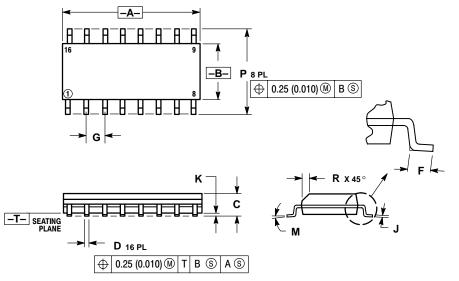


CASE 2: If the MR is de-asserted (L-H), after the Clock has transitioned low, the outputs will follow the second ensuing clock rising edge.

Figure 1. Timing Diagrams

The EN signal will freeze the internal clocks to the flip–flops on the first falling edge of CLK after its assertion. The internal dividers will maintain their state during the internal clock freeze and will return to clocking once the internal clocks are unfrozen. The outputs will transition to their next states in the same manner, time and relationship as they would have had the EN signal not been asserted.




Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1404	_	ECLinPS Circuit Performance at Non–Standard V_{IH} Levels
AN1405	_	ECL Clock Distribution Techniques
AN1406	_	Designing with PECL (ECL at +5.0 V)
AN1503	_	ECLinPS I/O SPICE Modeling Kit
AN1504	_	Metastability and the ECLinPS Family
AN1560	_	Low Voltage ECLinPS SPICE Modeling Kit
AN1568	_	Interfacing Between LVDS and ECL
AN1596	_	ECLinPS Lite Translator ELT Family SPICE I/O Model Kit
AN1650	_	Using Wire–OR Ties in ECLinPS Designs
AN1672	_	The ECL Translator Guide
AND8001	_	Odd Number Counters Design
AND8002	_	Marking and Date Codes
AND8020	_	Termination of ECL Logic Devices

PACKAGE DIMENSIONS

SO-16 D SUFFIX CASE 751B-05 ISSUE J

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	9.80	10.00	0.386	0.393		
В	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27	BSC	0.050 BSC			
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
М	0 °	7°	0 °	7°		
Р	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights on the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.